Subdivisions of a large clique in C6-free graphs

نویسندگان

  • József Balogh
  • Hong Liu
  • Maryam Sharifzadeh
چکیده

Mader conjectured that every C4-free graph has a subdivision of a clique of order linear in its average degree. We show that every C6-free graph has such a subdivision of a large clique. We also prove the dense case of Mader’s conjecture in a stronger sense, i.e. for every c, there is a c′ such that every C4-free graph with average degree cn 1/2 has a subdivision of a clique K` with ` = bc′n1/2c where every edge is subdivided exactly 3 times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proof of Mader's conjecture on large clique subdivisions in C4-free graphs

Given any integers s, t ≥ 2, we show there exists some c = c(s, t) > 0 such that any Ks,t-free graph with average degree d contains a subdivision of a clique with at least cd 1 2 s s−1 vertices. In particular, when s = 2 this resolves in a strong sense the conjecture of Mader in 1999 that every C4-free graph has a subdivision of a clique with order linear in the average degree of the original g...

متن کامل

Cohen-Macaulay $r$-partite graphs with minimal clique cover

‎In this paper‎, ‎we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay‎. ‎It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$‎, ‎then such a cover is unique‎.

متن کامل

Intersection graphs associated with semigroup acts

The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...

متن کامل

Chromatic Number, Clique Subdivisions, and the Conjectures of Hajos and Erdos-fajtlowicz Citation Publisher Accessed Terms of Use Detailed Terms Chromatic Number, Clique Subdivisions, and the Conjectures of Hajós and Erd˝ Os-fajtlowicz

For a graph G, let χ(G) denote its chromatic number and σ(G) denote the order of the largest clique subdivision in G. Let H(n) be the maximum of χ(G)/σ(G) over all n-vertex graphs G. A famous conjecture of Hajós from 1961 states that σ(G) ≥ χ(G) for every graph G. That is, H(n) ≤ 1 for all positive integers n. This conjecture was disproved by Catlin in 1979. Erdős and Fajtlowicz further showed ...

متن کامل

Partial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph ofG. The list of minimal forbidden induced subgraphs for the class of clique-perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2015